Nonalcoholic Steatohepatitis Modulates Membrane Protein Retrieval and Insertion Processes.
نویسندگان
چکیده
Interindividual variability in drug response in nonalcoholic steatohepatitis (NASH) can be mediated by altered regulation of drug metabolizing enzymes and transporters. Among these is the mislocalization of multidrug resistance-associated protein (MRP2)/Mrp2 away from the canalicular membrane, which results in decreased transport of MRP2/Mrp2 substrates. The exact mechanism of this mislocalization is unknown, although increased activation of membrane retrieval processes may be one possibility. The current study measures the activation status of various mediators implicated in the active membrane retrieval or insertion of membrane proteins to identify which processes may be important in rodent methionine and choline deficient diet-induced NASH. The mediators currently known to be associated with transporter mislocalization are stimulated by oxidative stressors and choleretic stimuli, which play a role in the pathogenesis of NASH. The activation of protein kinases PKA, PKCα, PKCδ, and PKCε and substrates radixin, myristoylated alanine-rich C-kinase substrate, and Rab11 were measured by comparing the expression, phosphorylation, and membrane translocation between control and NASH. Many of the mediators exhibited altered activation in NASH rats. Consistent with membrane retrieval of Mrp2, NASH rats exhibited a decreased phosphorylation of radixin and increased membrane localization of PKCδ and PKCε, thought to be mediators of radixin dephosphorylation. Altered activation of PKCδ, PKA, and PKCα may impair the Rab11-mediated active insertion of Mrp2. Overall, these data suggest alterations in membrane retrieval and insertion processes that may contribute to altered localization of membrane proteins in NASH.
منابع مشابه
Endoplasmic reticulum stress in nonalcoholic fatty liver disease.
The underlying causes of nonalcoholic fatty liver disease are unclear, although recent evidence has implicated the endoplasmic reticulum in both the development of steatosis and progression to nonalcoholic steatohepatitis. Disruption of endoplasmic reticulum homeostasis, often termed ER stress, has been observed in liver and adipose tissue of humans with nonalcoholic fatty liver disease and/or ...
متن کاملThe Effect of Diet and Exercise on Improvement of Quality of Life in Patients with Nonalcoholic Steatohepatitis
Background & Aims: Nonalcoholic steatohepatitis (NASH) is part of nonalcoholic fatty liver disease (NAFLD). No special medical treatment is known for this disease, and lifestyle modification is the best known method of treatment. We aimed to compare the effect of diet and aerobic exercise with that of diet alone on the quality of life of patients with NASH. Methods: In the present study, 25 pat...
متن کاملA silybin-phospholipid complex prevents mitochondrial dysfunction in a rodent model of nonalcoholic steatohepatitis.
Mitochondrial dysfunction and oxidative stress are determinant events in the pathogenesis of nonalcoholic steatohepatitis. Silybin has shown antioxidant, anti-inflammatory, and antifibrotic effects in chronic liver disease. We aimed to study the effect of the silybin-phospholipid complex (SILIPHOS) on liver redox balance and mitochondrial function in a dietary model of nonalcoholic steatohepati...
متن کاملAllantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 44 11 شماره
صفحات -
تاریخ انتشار 2016